Additions and Corrections

Sterochemistry of Bisbenzylisoquinoline N-Oxides. Calafatine 2α -N-Oxide and Calafatine 2β -N-Oxide

John E. Leet, Alan J. Feyer, Robert D. Minard, and Maurice Shamma * J. Chem. Soc., Perkin Trans. 1,1984, 651.

The following correction applies to this paper.

For the bisbenzylisoquinoline osornine, the left hand 2-*N*-methyl signal appears at δ 2.28, while the right hand 2'-*N*-methyl absorption is found at δ 2.40. For calafatine, the 2-*N*-methyl singlet is at δ 2.35 and the 2'-*N*-methyl is at δ 2.59. These conclusions follow from complete n.m.r. NOEDS studies on these alkaloids. It, therefore, follows that the two known *N*-oxides of calafatine correspond to 2' α -*N*-oxide (1) and calafatine 2'- β -*N*-oxide (2), with the *N*-oxide functions situated in the right-hand side of the dimers.

For ring C: $J_o \approx 8.5$ Hz; for ring C': $J_o \approx 8.2$ Hz, $J_m \approx 2.2$ Hz

Photochemical Transformation of Tetrabromofuran by Oxygen into 2,3,4,4-Tetrabromobut-2-en-4-olide in the Solid State

Charles W. Shoppee,

J. Chem. Soc., Perkin Trans. 1, 1985, 45.

Page 51, right-hand column: line 12, delete subscript '264' and insert subscript '254'; line 14, delete '366' and insert '254'.

Synthesis and Reactions of 2,3-Dihydro-oxazolo[2,3-a]isoindol-5(9bH)-ones

Clifford J. Wharton and Roger Wrigglesworth

J. Chem. Soc., Perkin Trans. 1, 1985, 809.

Page 812, left-hand column, paragraph 3, line 9, delete ' $[(CO_3)_2SO]$ ' and insert ' $[(CD_3)_2SO]$ '; paragraph 4, delete line 2 and insert 'hydrazine hydrate (0.6 g, 12 mmol) and (3c) (0.21 g, 1.2 mmol).' Page 813, reference 1, delete '1905806' and insert '190580b'; reference 6, delete '????' and insert '1905'.